COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Physics			
LEVEL OF STUDIES	Undergraduate (postgraduate course offered to			
	undergraduate students)			
COURSE CODE	10EK411		SEMESTER	7
COURSE TITLE	MATHEMATICAL PHYSICS			
INDEPENDENT TEACHING ACTIVITIES		WEEKLY		
if credits are awarded for separate components of the course, e.g. lectures, TEACHING			CREDITS	
laboratory exercises, etc. If the credits are awarded for the whole of the course,			HOURS	
give the weekly teaching hours and the total creats		1	6	
	Specialised K	nowledge	7	0
aeneral backaround, special backaround,	Specialised K	nowieuge		
specialised general knowledge, skills				
development				
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and	Greek			
EXAMINATIONS:				
IS THE COURSE OFFERED TO	Yes (in the English language for Erasmus students)			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/PHYS230/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course provides the student with the opportunity to become familiar with the use of approximate mathematical methods for solving complex physical problems as well as advanced techniques for solving wave type partial differential equations for a range of boundary conditions. By successfully attending and completing the course, the student will be able to:

• Use orthogonal polynomials as a basis for solving the Laplace, diffusion, Helmholtz and Poisson equations for various boundary conditions.

• Use advanced integration techniques in the complex plane.

• Calculate a variety of mathematical transforms and their inverses (Fourier, Laplace, Hilbert, Mellin) and be able to use them in solving physical problems.

• To be able to find the asymptotic expansions of special functions defined through integral relations and to understand their connection to physical problems.

• Calculate Green's functions for a series of wave-type equations.

• To use the technique of Green's functions to solve problems of non-relativistic and relativistic Quantum Mechanics.

• To solve Fredholm and Volterra type integral equations focusing on their application to scattering problems in Quantum Mechanics.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	·····
Production of new research ideas	Others

The course aims at the following general competences:

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Working independently.
- Analytical and synthetic thinking.
- Critical thinking.
- Problem solving.

(3) SYLLABUS

- Special functions and orthogonal polynomials. Expansion in eigenfunctions. Laplace, diffusion, Helmholtz, Poisson equations (4 hours).
- Hilbert transform. Dispersion relations. Advanced complex integration techniques and their applications (12 hours).
- Saddle point and stationary phase approximations. Asymptotic expansions (10 hours).
- Green's functions: Construction of Green's functions for the Helmholtz, Poisson, Laplace equations and for the wave equation (8 hours).
- Problems in Cartesian, spherical and cylindrical coordinates with homogeneous and inhomogeneous boundary conditions. Expansion in orthogonal polynomials. The importance of propagator and Green's function in quantum mechanics (8 hours).
- Integral equations: Fredholm and Volterra equations. Relation to Green's equations. Exact solution techniques through expansion in orthogonal polynomials and through integral transformations (Fourier, Laplace, Mellin, Hankel). Solving through iterative approaches (10 hours).

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face (Distance learning in special circumstances)			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes Electronic communication with the students using ICT. Computer-aided lectures, e-class platform.			
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Activity Lectures Individual Study/ Study and Analysis of bibliography / Preparation Exercises at home	Semester workload 52 48 50		
	Course Total	150		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	• Final written exams in the Gr combined, if necessary, with a	eek language (or English) n oral exam		

(5) ATTACHED BIBLIOGRAPHY

Suggested bibliography:

- Mathematics of Classical and Quantum Physics, F. W. Byron & R. W. Fuller (Dover)
- Methods of Theoretical Physics, P. M. Morse & A. H. Feshbach (Mc Graw Hill)
- Methods of Mathematical Physics, R. Courant & D. Hilbert (Wiley)
- Elements of Green's Functions and Propagation, G. Barton (Oxford Science Publications)
- Mathematical Physics: A modern introduction to its foundations, S. Hassani (Springer)

Instructor's notes and plenty of notes online