COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Physics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	10EKO04 SEMESTER 6			
COURSE TITLE	Statistical Physics II			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
Lectures (theory and exercises)		5	7	
	-			
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special Backgro	ound		
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, in the English language for Erasmus students			
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/PHYS260/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The aim of the course is the introduction of the physics of phase transitions for interacting particle systems. After an introduction in the concepts of symmetry breaking, its causes, and the order parameter, the simple Ising model within the Curie-Weiss approximation, where all spins interact with each other, is analyzed. In this context, the important concepts of critical exponents and the mean field are introduced. Subsequently, the above results are generalized in systems with local interactions, for which various approximations are used. These methods are used in multiple system models. Furthermore, the phenomenological Landau Theory of phase transitions is developed. This method highlights the importance of symmetries and their breaking, the order parameter and the concept of universality. to the thermodynamics of phase-transitions, two basic mean-field theories (Weiss and Bragg-Williams) are analyzed, in which the crucial role of interactions is showcased. These methods are applied to several systems. Subsequently, the Landau phenomenological theory for phase changes is developed. This method highlights the importance of symmetries and the importance of symmetries and their breaking, the class parameter and the concept of universality. Also, the significance of fluctuations in phase transitions is analyzed, as well as and their role in invalidating the predictions of mean-field theory. Finally, the importance of the quantum nature in phase transitions is discussed.

With the completion of the course the student is able to :

- Describe phase transition phenomena in the context of mean-field theory of interacting systems.
- Identify physical laws underlying phase transitions in various condensed matter systems.
- Explain the role of symmetry and symmetry breaking at phase transitions.
- Find the order parameter of a transition and construct the Landau free energy expansion.
- Comprehend the notion of fluctuations and the conditions under which they invalidate meanfield theory.
- Evaluate physical quantities related with critical phenomena in different physical systems.
- Calculate critical exponents in the context of mean-field theory.
- Combine concepts and physical laws of correlations to interpret the critical behavior of condense matter.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

By successfully attending and completing the course the student will acquire the following skills:

• Ability to search, analyze and compose data and information, using the appropriate

technological tools.

- Ability to work autonomously.
- Train free, creative and inductive thinking.
- Train analytical and synthetic thinking.
- Ability to solve problems.

(3) SYLLABUS

- Ferromagnetism. Exchange Interaction. Ising Model. Curie-Weiss Model
- Bragg-Williams Approximation. Applications.
- Bethe Approximation. Bethe Lattices. Applications.
- Symmetry. Order parameter. Construction of Landau functional.
- 1st order and 2nd order phase transitions. Critical Points. Critical Exponents. Correlation Length. Scaling Laws. Fluctuations. Response functions.
- Linear response in external time-dependent excitation. Fluctuation-Dissipation Theorem.
- Phase transitions in quantum systems. Superfluids, Stoner magnetism.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes Electronic communication with the students using ICT (Information and Communications Technology) eclass platform			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39		
described in detail. Lectures seminars laboratory practice.	Exercises	26		
fieldwork, study and analysis of bibliography, tutorials placements clinical practice art	Individual Study/ Study and	110		
workshop, interactive teaching, educational	Preparation			
visits, project, essay writing, artistic creativity, etc				
The student's study hours for each learning activity are given as well as the hours of non-				
directed study according to the principles of the	Course Total	175		
	course rotai	173		
Description of the evaluation procedure	Final written exams in Greek Open-ended questions, Problem solving			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice				
questionnaires, short-answer questions, open-				
enaea questions, problem solving, written work, essay/report, oral examination, public				
presentation, laboratory work, clinical examination of patient, art interpretation, other				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography

- STATISTICAL PHYSICS, F. Mandl
- STATISTICAL PHYSICS AND THERMODYNAMICS , E. N. EconomouE.N. Οικονόμου

- Related academic books:

- K.Huang, Statistical Mechanics, Wiley (1987)
- Principles of condensed matter physics P.M. Chaikin, T.C. Lubensky, Cambridge University Press 1995.
- R.K. Pathria, Statistical Mechanics, Butterworth-Heinemann, 1996
- J. P. Sethna, Statistical Mechanics, Oxford University Press, 2010
- M. Kardar, Statistical Physics of Particles, Cambridge University Press
- M. Kardar, Statistical Physics of Fields, Cambridge University Press