COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Physics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	10EAE11 SEMESTER 8			
COURSE TITLE	REAL ANALYSIS			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
		Lectures	6	9
COURSE TYPE general background, special background, specialised general knowledge, skills development	General Kno	wledge		
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/MATH244			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking

Others...

(3) SYLLABUS

- Set theory, countability. Metric spaces. Topological notions. Equivalent metrics. Bounded sets.
- Continuity of functions on metric spaces. Isometries. Lipschitz functions. Uniform continuity.
- Completeness. Fixed point theorems and applications to differential equations. Cantor theorem, Baire theorem and applications.
- Compactness. Separability. Cantor set.
- Sequences and series of functions: Pointwise and uniform convergence, Weierstrass criterion, uniform convergence and continuity, integration and differentiation.
- Continuous real functions in compact metric spaces: Weierstrass approximation theorem. The structure of the C(X) metric space.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students		
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Activity 	Semester workload
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals: