COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Physics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	10YK402 SEMESTER 7			
COURSE TITLE	ELEMENTARY PARTICLES			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
Lectures (theory and exercises)		4	6	
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised			
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, in the English language for Erasmus students			
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/PHYS148/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 - Guidelines for writing Learning Outcomes

The course provides the student with basic knowledge on the properties and interactions of elementary particles. Upon the completion of the course, the student is able to:

- Know the elementary particles that compose the natural world, their properties (quantum numbers, masses) and interactions.
- Understand the theoretical basis of the classification of elementary particles through fundamental symmetries.
- Be familiar with the experimental processes for the detection and study of the properties of elementary particles (accelerators, detectors).
- Know basic elements of relativistic quantum mechanics (Klein-Gordon and Dirac equations) and their predictions for the properties of the particles that they describe (spin, antiparticles, interaction with the electromagnetic field).
- Handle the formalism for the calculation of production probabilities and distributions of particles in collision experiments (differential cross section).
- Calculate the cross section for simple processes of electromagnetic scattering.
- Know the main properties of the weak interaction (parity violation), as well as the experiments through which they have been determined.
- Understand the basic elements of the theory of the weak interaction and its carriers, as well as the phenomenological consequences for particle production, scattering and decay.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility an
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

The course aims at the following general competences

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Working independently
- Analytical and synthetic thinking
- Critical thinking
- Problem solving

(3) SYLLABUS

- Introduction: Natural units. Review of elementary particles and interactions. (1 week)
- Experimental devices: Kinematics. Particle accelerators. Particle Detectors. (1 week)
- Symmetries in particle physics: Groups SU(2) of spin and isospin, SU(3) of flavor and color. Symmetries C και P. Representations of SU(3), classification of mesons and baryons, magnetic moments of baryons. (2 weeks)
- Relativistic Quantum Mechanics: Klein-Gordon equation. Dirac equation. Free-particle solutions. Antiparticles. Massless fermions. (2 weeks)
- Scattering: Non-relativistic scattering theory, Fermi's golden rule. Spinless electron in electromagnetic field, electron-muon scattering. Feynman diagrams, scattering amplitude, cross section. Electron with spin in electromagnetic filed, Moller scattering. (3 weeks)
- Weak interactions: Fermi's theory of β-decay. Parity violation, the Wu experiment. Unification of electromagnetic and weak interactions, W and Z bosons. Muon and pion decay. Cabibbo angle, CKM matrix. CP violation. (3 weeks)
- Neutrino physics: Neutrino masses. Neutrino oscillations. (1 week)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes Communication with the students using ICT (Information and Communications Technology) Computer-aided lectures, use of Overhead Projectors eclass platform			
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- diracted study according to the acting to the	Activity Lectures Exercises Individual study/ problem solving/ analysis of bibliography Course Total	Semester workload 36 16 98 150		
ECTS STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Final written exam in Greek			

(5) ATTACHED BIBLIOGRAPHY

- M.Peskin, Concepts of Elementary Particle Physics, Greek translation
- D. Perkins, Introduction to High Energy Physics, Greek translation
- A. Bettini: Introduction to Elementary Particle Physics, Greek translation
- B.R. Martin and G. Shaw: Particle Physics, Greek translation
- F. Halzen and A. Martin : Quarks and Leptons
- Notes by the instructors