COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Physics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	10YK502 SEMESTER 7			
COURSE TITLE	Solid State Physics			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
Leo	tures (theory and exercises)		4	6
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialized H	Knowledge		
PREREQUISITE COURSES:	Νο			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, in the English language for Erasmus students			
COURSE WEBSITE (URL)	ιστοσελίδα eclass:			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

In this course the students acquire the necessary knowledge for the properties of metals and semiconductors and transport phenomena in these materials. With the completion of the course the student is able to:

- Understand the transport phenomena in metals and semiconductors under the influence of an electric field, a temperature gradient, and a carrier concentration gradient or under the influence of a magnetic field.
- Understand the historical evolution of the models which were put forward in order to explain the transport phenomena approaching in a more realistic way the experimental evidence.
- Recognize the differences in the properties of metals and semiconductors in accordance with the periodicity of their structure and their energy bands.
- Understand the meanings of effective mass, chemical potential or Fermi energy, carrier mobility in metals and semiconductors as well as their effects in the conductivity of these materials at different temperatures.
- Recognize the differences in the electrical conductivity of metals and semiconductors originating from the selection of the appropriate distribution function which describes the occupancy of the energy sates by the carriers contributing to the transport phenomena.
- Combine his/her knowledge in Solid State Physics, Electromagnetism, Quantum Mechanics and Statistical Physics in order to understand transport phenomena in metals and semiconductors.
- Describe diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism.
- Understand the meaning of magnetic moment due to orbital angular momentum and spin of electrons, and the meaning of magnetic susceptibility and its temperature dependence.
- Understand phenomena of magnetic ordering due to exchange interactions related to ferromagnetism and antiferromagnetism.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management	
information, with the use of the necessary technology	Respect for difference and multiculturalism	
Adapting to new situations	Respect for the natural environment	
Decision-making	Showing social, professional and ethical responsibility and	
Working independently	sensitivity to gender issues	
Team work	Criticism and self-criticism	
Working in an international environment	Production of free, creative and inductive thinking	
Working in an interdisciplinary environment		
Production of new research ideas	Others	

The course aims at the following general competences

Search for, analysis and synthesis of data and information, with the use of the necessary technology

- **Decision-making**
- Working independently

- Analytical and synthetic thinking
- Critical thinking
- Problem solving

(3) SYLLABUS

- Transport phenomena in metals, electrical and thermal conductivity (Drude, Lorenz, and Sommerfeld models), Boltzmann transport equation, temperature dependence of electrical conductivity.
- Energy bands, motion of electrons in a periodic potential, conductors, insulators and semiconductors, Bloch's theorem, the Kronig-Penney model.
- Semiconductor models, density of states in real materials, Fermi-Dirac statistics, equilibrium carrier distribution, doping, Fermi level, transport phenomena in semiconductors, drift, Hall effect, diffusion, band bending.
- Magnetism, diamagnetism and paramagnetism, origin of magnetic interactions; types of magnetic ordering, ferromagnetism and antiferromagnetism.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes Electronic communication with the students using ICT (Information and Communications Technology) Computer-aided lectures, use of Overhead Projectors, eclass platform			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	32		
Lectures, seminars, laboratory practice,	Exercises	20		
fieldwork, study and analysis of bibliography,	Individual Study/ Study and	95		
workshop, interactive teaching, educational	Preparation			
visits, project, essay writing, artistic creativity,	Exams	3		
	Course Total	150		
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS				
STUDENT PERFORMANCE	Final written exams in Greek			
EVALUATION Description of the evaluation procedure				
Language of evaluation, methods of evaluation,				
questionnaires, short-answer questions, open-				
ended questions, problem solving, written work,				
essay/report, ordi examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Φυσική Ημιαγωγών, Γ.Π. Τριμπέρης, LIBERAL BOOKS ΜΟΝΟΠΡΟΣΩΠΗ ΕΠΕ, 2013
- Φυσική Στερεάς Κατάστασης Τόμος Ι, Ε. Ν. Οικονόμου, ΙΤΕ ΠΑΝ/ΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ, 2010
- Φυσική Στερεάς Κατάστασης, Ibach& Η. Luth, ΕΚΔΟΣΕΙΣ , ΠΕΛΑΓΙΑ ΖΗΤΗ, 2011
- Φυσική Στερεάς Κατάστασης, Ν. Ashcroft, Ν.D. Mermin, ΕΚΔΟΣΕΙΣ Γ.Π. ΠΝΕΥΜΑΤΙΚΟΣ, 2012