COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Physics				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	10YKO01 SEMESTER 1				
COURSE TITLE	PHYSICS I				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS		CREDITS	
Leo	ectures (theory and exercises)		6		7
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special back	ground			
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, in the English language for Erasmus students				
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/PHYS153/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

This course is the first systematic introduction to the basic concepts of Newtonian Mechanics and Fluid Mechanics by using Vector and Differential / Integral Calculus. It also includes introductory concepts of the Special Theory of Relativity.

With the successful attendance and completion of the course, the student is in position to: • Describe the basic physical quantities and units of Mechanics in the context of Vector and

- Differential / Integral Calculus.
- Understand the relative dependencies of these physical quantities.
- Identify the conservation principles and the fundamental symmetries that govern the various mechanical systems.
- Explain the static or kinematical state of a system by all the forces applied to it.
- Calculate dynamical characteristics of the rigid body (moment of inertia) with basic integration techniques.
- To formulate the basic differential equations for the motion of a body.
- Explain and calculate the basic quantities of length, time or speed in different inertial systems.
- Organize systematically the data of a problem to find the solution for more complicated physical systems.
- Plot graphically the data and the results of a problem.
- Evaluate critically the results.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

The course aims at the following general competences

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Production of free, creative and inductive thinking
- Analytical and synthetic thinking
- Critical thinking
- Problem solving

(3) SYLLABUS

- Linear motion. Curvilinear motion. Relative motion. Introduction to the Special Theory of Relativity.
- Impulsive forces. Collisions.
- One-body dynamics.
- Work. Energy. Dynamics of many-body systems.
- Rigid body rotation around a fixed axis.
- Rolling. Angular momentum and torque. Oscillations.
- Law of Universal Gravitation. Fluid mechanics.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes Electronic communication with the students using ICT (Information and Communications Technology) Computer-aided lectures, use of video Projectors, eclass platform				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are described in detail.					
Lectures, seminars, laboratory practice,	Lectures	52			
tutorials, placements, clinical practice, art	Exercises	20 97			
workshop, interactive teaching, educational	Analysis of bibliography /	57			
etc.	Preparation				
The student's study hours for each learning					
activity are given as well as the hours of non-	Course Total	175			
directed study according to the principles of the ECTS					
STUDENT PERFORMANCE					
EVALUATION Description of the evaluation procedure	Final written exams in Greek				
Language of evaluation, methods of					
evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions,					
open-ended questions, problem solving, written					
presentation, laboratory work, clinical					
examination of patient, art interpretation, other					
Specifically defined evaluation criteria are					
given, and if and where they are accessible to					
students.					

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Fundamentals of Physics (Volume A) by David Halliday, Robert Resnick, Jearl Walker
- University Physics (Volume A) by Hugh D. Young; Roger A. Freedman
- Physics for Scientists & Engineers (Volume A) by Douglas Giancoli
- Introduction to Newtonian Physics by K. Farakos
- Fundamental University Physics by Alonso-Finn

- Related academic journals:

- American Journal of Physics
- Nature
- Physics Education
- Physics Today
- Physics World
- Science
- The Physics Teacher