COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Sci	ence			
ACADEMIC UNIT	Physics				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	10YKO03		SEMESTER	3	
COURSE TITLE	PHYSICS III			•	
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREI	DITS	
Lectures (theory and exercises)		6	7	7	
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special Background				
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, in the English language for Erasmus students				
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/PHYS113/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course aims to introduce the fundamental principles of Electromagnetism.

Upon completion of the course the student will be able to:

• Understand the concept of electrical and magnetic field as well as the physics quantities describing it (electric and magnetic field, potential, potential difference, field lines)

• Be able to deal with electrostatic and magnetostatic problems for continuous linear, surface and volume densities of charges and currents using Coulomb, Gauss, Biot-Savart, and Ampère laws. Be able to calculate the field strength, potential and potential difference, and total energy of the system.

• Understand the moving charge as a source of magnetic fields and the varying magnetic field as an electric field source. Be able to solve induction problems in electric circuits with varying magnetic fluxes, and with moving charge distributions.

• Through the integral and differential form of Maxwell's equations to understand the first unification of forces in Physics, and the concept of the electromagnetic field. To be able to solve simple problems.

• Have a qualitative understanding of the propagation of an electromagnetic field and be able to solve simple problems.

General Competences Taking into consideration the general competences that t Supplement and appear below), at which of the following	he degree-holder must acquire (as these appear in the Diploma does the course aim?
Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

The course aims at the following general competences

Search for, analysis and synthesis of data and information, with the use of the necessary tools Adapting to new situations Decision-making Working independently Production of free, creative and inductive thinking Analytical and synthetic thinking Critical thinking Taking initiative/responsibility Creativity Determination Meeting Deadlines and Keeping Schedules Flexibility / Adaptability Problem solving

(3) SYLLABUS

- Electric charge, Coulomb law, electric field, dynamic lines, potential, potential difference, insulated conductor. Law Gauss, examples
- Spherical shell field. Capacity, capacitors. Current, resistance, Ohm law. Magnetic field, Laplace force, power in conductor, applications.
- Current as the source of the magnetic field, Biot-Savart law. Law Ampère, applications
- Induction, Faraday law, coefficient of induction. Circuit RL, RLC, mechanical oscillator analogy.
- Maxwell laws in complete and differential form. Electromagnetic field energy, Poynting vector.
- Qualitative explanation of the propagation of an electromagnetic field, electromagnetic waves.

(4) TEACHING and LEARNING METHODS - EVALUATION

	Face-to-face			
DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
3 .	No.			
USE OF INFORMATION AND	Yes			
COMMUNICATIONS TECHNOLOGY				
Use of ICT in teaching, laboratory education, communication with students	Electronic communication with the students using ICT			
communication with statents	(Information and Communications Technology)			
	Computer-aided lectures, use of Overhead Projectors,			
	eclass platform			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.				
Lectures, seminars, laboratory practice,	Lectures	(13weeks x 4hours/week =)		
fieldwork, study and analysis of bibliography,		52 hours		
tutorials, placements, clinical practice, art	Exercises	(13weeks x 2hours/week =)		
workshop, interactive teaching, educational		26 hours		
visits, project, essay writing, artistic creativity, etc.				
	Individual Study/ Study and	94		
The student's study hours for each learning	Analysis of bibliography /			
activity are given as well as the hours of non-	Preparation			
directed study according to the principles of the ECTS	Written exams	3		
	Course Total	175		
STUDENT PERFORMANCE	Final written exam in Greek	with problem solving covering		
EVALUATION	the entire course.			
Description of the evaluation procedure				
	Oral examinations where requ	ired.		
Language of evaluation, methods of evaluation,				
summative or conclusive, multiple-choice questionnaires, short-answer questions, open-				
ended questions, problem solving, written work,				
essay/report, oral examination, public				
presentation, laboratory work, clinical				
examination of patient, art interpretation, other				
Specifically-defined evaluation criteria are				
given, and if and where they are accessible to				
students.				

(5) ATTACHED BIBLIOGRAPHY

I	Θεμελιώδης Πανεπιστημιακή Φροική, Τάμος ΙΙ, Πλεκτρομαγνητισμός	ALONSO – FINN, Μετάφρειση Α.Κ. Ρεαθέανης, Τ.Α. Φίλιππας	ΒΚΔΟΣΕΙΣ ΚΟΡΦΙΑΤΗΣ	1979	Λθήνα
2	Πανεπιστημιακή Φυσική με σύγχρονη Φυσική, Τόμος Β	Hugh D. Young. Freedman R.	ΒΚΔΟΣΕΙΣ ΠΑΠΑΖΗΣΗ	2010	Αδήνιε
3	Φυσική, Μέρος Π	HALLIDAY- RESNICK	Α.Γ. ΠΝΕΥΜΑΤΙΚΟΣ Βπιστημονικές και Γεχνολογικές Εκδάσεις	1992	Αδήνιε
4	Φυσική γκε επιστήμανες και μηχανικούς Τόμος Π	D.C. Giuncoli (Επιμέλοι): Α.Κεχαγιάς, Κ. Σφέτσος, Γ.Ταπολίτης)	ΕΚΔΟΣΈΙΣ ΤΖΙΟλΑ	2011	Θεσ/κη
5	Φυσική Τόμος Π Ρ Εκδοιη	D.Hallidey, R. ResnicK, J. Walker. Κ. Παπανικόλας, Α. Καραμπαρμπούνη Σ. Καέν, Π. Σποράκης, Β. Στολιάρης, Π. Τξανετάκης Γ. Τξαμιζής	Γ. ΔΑΡΔΑΝΟΣ& ΣΙΛ Β.Β.	2013	Αδήνιε