COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Sci	ence			
ACADEMIC UNIT					
	Physics				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	10YKO07	OYKO07 SEMESTER 3			
COURSE TITLE	Physics III Ba	sic Laboratory			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS		CREDITS
	Laboratory practice		3		4
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special background				
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, in the English language for Erasmus students				
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/PHYS204				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course offers to the student via a series of laboratory experiments, the necessary knowledgefor the comprehension and deeper understanding of the theory of Thermodynamics, Optics and Wave Mechanics as well as deepen their knowledge about experimental methods and instruments, which will be used in problem solving. Additionally, the university students are teaching the basic principles of Physics at school students.

By successfully attending and completing the course, the student should:

-To use prism and grating spectrometers for the spectral analysis of light and the measurement of light wavelength and the dispersion relation of the glass refraction index.

-Measure the propagation velocity of elastic waves in solid rods and the normal modes -

eigenfrequencies (Fourier analysis). Measure the Young modulus.

-Determine the focal length of convex lenses and relevant aberration errors (spherical, chromatic). -Define and analyze light polarization by using suitable optical elements (polarizers, retardation

plates) and measure the Brewster angle and the optical activity of materials. Familiarize with the notions linear, cyclic, elliptical polarized light. Measure the angle of rotation of the polarization plane. -Use Michelson interferometer for the understanding of optical interference phenomena. Measure the wavelength of monochromatic light, and the refraction index of air and glass.

-Familiarize with notions of Thermodynamics, taking experimental measurements (pressure, temperature, volume) by using computers and Logger Pro software. Study experimentally isothermal compression and expansion and the Otto cycle (adiabatic compression, isochoric heat absorption, adiabatic expansion, isochoric heat dissipation).

-Study wave phenomena by using microwaves (reflection, refraction, polarization, interference, diffraction, standing waves). Familiarize with notions like phase and path difference, near field-Fresnel diffraction and and distant field - Fraunhofer diffraction. Use software to construct plots and compare experiment with theory.

-To study interference and diffraction with laser light on adequate gratings.

-Use software to construct plots.

-Determine the correct physical quantities from the sets of the experimental measurements, based on data reduction and error analysis.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

With successful completion and examination of the course, the aim is that the student acquires the following general competences and skills:

Analysis and synthesis of data and information, with the use of the necessary technology. Working independently. Team work. Criticism and self-criticism. Time management. Planning. Taking

initiative/responsibility. New Technology skills. Learning software for processing measurements and text like Logger Pro, excel, origin, word, excel. Communication skills. Information management. Self control skills. Meeting Deadlines and Keeping Schedules. Teaching skills

(3) SYLLABUS

- Prism and grating spectrometers.
- Study of isothermal process of a gas and the Otto cycle.
- Measurement of the speed of longitudinal waves and elastic constants in solids.
- Measurement of convex lenses focal distance and relevant aberration errors.
- Study of polarized light. Measurement of rotation capacity by polarimeter.
- Measurements with Michelson interferometer.
- Study of wave phenomena with microwaves (reflection, refraction, polarization, interference, diffraction, standing waves.
- Interference and diffraction using laser light on adequate gratings.
- Preparation, presentation and teaching of laboratory experiments, as well as the basic principles of experimentation in physics, by Physics Department students to other university students and high-school pupils, for the acquisition of pedagogical and educational competence by the students of the Department.

(4) TEACHING and LEARNING METHODS - EVALUATION

	Face to face				
DELIVERY Face-to-face, Distance learning, etc.	Face-to-face				
USE OF INFORMATION AND	Yes				
COMMUNICATIONS TECHNOLOGY					
Use of ICT in teaching, laboratory education, communication with students	Electronic communication with the students using ICT				
communication with stadents	(Information and Communications Technology). Computer-				
	aided lectures.E-class:				
	https://eclass.uoa.gr/courses/PHYS204				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are	Laboratory practice	30			
described in detail.	Individual study. Study and	20			
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,					
tutorials, placements, clinical practice, art	Preparation.				
workshop, interactive teaching, educational	Writing reports / essays	25			
visits, project, essay writing, artistic creativity,	Microteaching	25			
etc.	Course Total	100			
The student's study hours for each learning					
activity are given as well as the hours of non-					
directed study according to the principles of the					
STUDENT PERFORMANCE	Oral examinations.				
EVALUATION	Laboratory reports.				
Description of the evaluation procedure	Microteaching (university students teach gymnasium-				
Language of evaluation, methods of	lyceum students, under staff supervision) The course consists of 8 laboratory exercises (experiments). For each, there is oral examination during the conduction of				
evaluation, summative or conclusive, multiple					
choice questionnaires, short-answer questions,					
open-ended questions, problem solving, written work, essay/report, oral examination, public					
presentation, laboratory work, clinical	the experiments by the students. For each, students have to prepare and submit a laboratory report one week after the experiment. Furthermore, University students present, in				
examination of patient, art interpretation,					
other					
Specifically defined avaluation evitoria	form of teaching, to Gymnasium and Lyceum students, some				
Specifically-defined evaluation criteria are given, and if and where they are accessible to		one laboratory exercise			
students.	(experimentalization and teaching). The final grade includes				
	oral examinations and laboratory reports for each				
	experiment as well as microteaching to gymnasium and				
	lyceum students.				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Laboratory Guide: PHYSICS III Laboratory Thermodynamics Wave mechanics Optics, NKUA, 2018
- R. Serway, Physics for Scientists and Engineers, ΜετάφρασηΛ. Ρεσβάνη, ΤόμοςΙΙΙ, Θερμοδυναμική - Κυματική - Οπτική, 1991
- L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of acoustics, John Wiley.
- Η. J. Pain, Φυσική των ταλαντώσεων και των κυμάτων, Συμμετρία, Αθήνα, 1991.
- Μ. Alonso, Ε. Finn, Θεμελιώδης Πανεπιστημιακή Φυσική, Τόμος ΙΙ, Πεδία και Κύματα, Μέρος 3 Κύματα, 1979, Εκδόσεις Αναστάσιος Φίλιππας.
- F. A. Jenkins and H. E. White, Principles of Optics, McGraw-Hill, New York, 1976.
- Ν. Παναγέας: Εφαρμογή νέων τεχνολογιών στα εργαστήρια Θερμοδυναμικής, Διπλωματική Εργασία, Αθήνα 2010.
- Χ. Τρικαλινός, Μοριακή Φυσική Θερμοδυναμική, αυτοέκδοση, Αθήνα, 2009.
- K. Kikoin and I. K. Kikoin, Molecular Physics, Mir Publishers, Moscow, 1978.
- N. Matveev, Molecular Physics, Mir Publishers, Moscow, 1985.