COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science		
ACADEMIC UNIT	Physics		
LEVEL OF STUDIES	Undergraduate		
COURSE CODE	10YKO15	SEMESTER	3
COURSE TITLE	MATHEMATICAL METHODS IN PHYSICS (Complex Analysis)		
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS
Lectures (theory and exercises)		5	7
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special Background		
PREREQUISITE COURSES:	No		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek		
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Νο		
COURSE WEBSITE (URL)	https://eclass.uoa.gr/cour.	ses/PHYS278/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course provides a rigorous, systematic and an in-depth study of the theory of complex functions and its applications in physics problems.

With the completion of the course the student is able to:

- Handle elementary functions of one complex variable, study its fundamental properties, such as analyticity and the types of singular points, and expand a complex function into Taylor or Laurent series.
- Handle mappings by elementary complex functions, and employ the conformal mapping method to solve physics problems (e.g., in fluid dynamics, electrostatics and heat flow).
- Calculate, under parameterization, path integrals in the complex plane, evaluate contour integrals using the residue theorem, and employ the method of residues to evaluate integrals of real functions.
- Evaluate integral transforms (Fourier/inverse Fourier, Laplace/inverse Laplace) of a function, and employ integral transforms to solve differential equations of mathematical physics.
- Employ the methods of stationary phase and steepest descend to evaluate the asymptotic behavior of integrals.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

The course aims at the following general competences

Working independently Production of free, creative and inductive thinking Analytical and synthetic thinking Critical thinking Problem solving

(3) SYLLABUS

- Complex numbers, elementary functions of a complex variable, multivalued functions branches.
- Continuity, derivative of a complex function, analytic functions and Cauchy-Riemann equations, harmonic functions.
- Mapping by elementary functions, conformal mapping, and applications in physics.
- Complex power series, Taylor and Laurent series, classification of singularities, contour integral, Cauchy theorem and residue theorem, evaluation of integrals.
- Fourier and Laplace transforms, applications το partial and ordinary differential equations, stationary phase and steepest descent methods.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face Distance learning in exceptional situations		
r ace-to-jace, Distance learning, etc.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes Electronic communication with the students using ICT (Information and Communications Technology), eclass platform		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	39	
aescribea in aetaii. Lectures seminars laboratory practice	Exercises	26	
fieldwork, study and analysis of bibliography,			
tutorials, placements, clinical practice, art	Individual Study/ Study and	110	
workshop, interactive teaching, educational	Analysis of bibliography /		
etc.	Preparation		
The student's study hours for each learning	Course Total	175	
directed study according to the principles of the ECTS			
STUDENT PERFORMANCE			
EVALUATION Description of the evaluation procedure	Final written exams in Greek		
Language of evaluation methods of evaluation	Oral examination (when appropriate)		
summative or conclusive, multiple choice			
questionnaires, short-answer questions, open-			
ended questions, problem solving, written work,			
presentation. laboratory work. clinical			
examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to			
students.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- R. Churchill, J. Brown, Μιγαδικές Συναρτήσεις και Εφαρμογές (ΙΤΕ-Πανεπιστημιακές Εκδόσεις Κρήτης, 2005).
- J. E. Marsden, J. M. Hoffman (μετάφραση: Λ. Παπαλουκάς), Βασική Μιγαδική Ανάλυση (Εκδόσεις Συμμετρία, 1994).
- Σ. Μερκουράκης, Τ. Χατζηαφράτης, Εισαγωγή στη Μιγαδική Ανάλυση (Εκδόσεις Συμμετρία, 2005).