COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Physics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	10YKO33 SEMESTER 5			
COURSE TITLE	Quantum Mechanics I			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
Lectures (theory and exercises)		5	7	
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special background			
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, in the English language for Erasmus students			
COURSE WEBSITE (URL)	https://eclass.uoa.gr/courses/PHYS151/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The goal of the course is to provide understanding of and familiarity with the concepts of quantum mechanics, along with the ability to process the basic principles and to solve simple, mostly onedimensional problems.

Upon successful completion of the course, students will be:

- In command of the basic principles that govern quantum phenomena.
- Able to understand the difference between the quantum and classical descriptions of physical systems and observables.
- Able to use the mathematical foundations of Quantum Mechanics and the corresponding fundamental equations for solving physical problems.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

The course aims at the following general competences:

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Team work
- Production of free, creative and inductive thinking
- Analytical and synthetic thinking
- Critical thinking
- Problem solving

(3) SYLLABUS

- Principles of quantum mechanics. Observables. Measurement of physical quantities. Mean values and dispersion of values.
- Schrödinger's equation. Time evolution of the system and of the observable quantities.
- Continuous spectrum. Position and momentum representations.
- The uncertainty principle, energy-time uncertainty.
- Particles in one-dimensional potentials. The one-dimensional harmonic oscillator. Scattering problems in one dimension.
- Schrödinger's equation for N particles. Motion in three dimensions. Orbital angular momentum.
- The Hydrogen atom.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes Electronic communication with the students using ICT (Information and Communications Technology) Computer-aided lectures, use of Overhead Projectors, eclass platform			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	39		
Lectures, seminars, laboratory practice,	Exercises	26		
tutorials, placements, clinical practice, art	Analysis of bibliography /	110		
workshop, interactive teaching, educational	Preparation			
etc.				
The student's study hours for each learning	Course Total	175		
activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course rotar	1/5		
STUDENT PERFORMANCE				
EVALUATION				
	Final written exam in Greek			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions,				
open-ended questions, problem solving, written work, essay/report, oral examination, public				
presentation, laboratory work, clinical examination of patient, art interpretation, other				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

(5) ATTACHED BIBLIOGRAPHY

- Quantum Mechanics, S. Trachanas, Crete University Press (2009).
- Introduction to Quantum Mechanics, K. Tamvakis, Leader Books (2003).
- Introduction to Quantum Physics, K. Farakos and G. Koutsoubas, Tsiotra Editions (2021).
- Quantum Physics (3rd Edition), S. Gasiorowicz, Kleidarithmos Editions (2015).
- A. Karanikas & P. Sphicas, course notes posted on e-class.
- V. Georgalas & G. Diamandis, course notes posted on e-class.
- **P. Mavropoulos,** course notes posted on e-class.